
AN1241
Inductive Touch Software Design
INTRODUCTION
This application note is intended as a companion to
application notes AN1237, “Inductive Touch Hardware
Design” and AN1239, “Inductive Touch Sensor
Design”. Its purpose is to acquaint the designer with the
software functions used in Microchip’s proprietary
inductive touch user interface system.

All information in this application note is applicable to
any Microchip microcontroller with a 10-bit ADC, or an
8-bit ADC if the analog multiplexer switching topology
is used.

THEORY OF OPERATION
The inductive touch user interface system is composed
of three elements: the sensors, the hardware to
perform the impedance measurement of the sensors,
and the software to scan and interpret the impedance
shift reported by the hardware.

FIGURE 1: INDUCTIVE TOUCH BLOCK
DIAGRAM

A two part ratio-metric reading is used in order to
measure the sensor. One reading is the amplitude of
the pulsed DC voltage across the reference coil. The
second reading is the amplitude of the pulsed DC volt-
age, generated across the sensor coil. By dividing the
sensor coil reading by the reference coil reading, a nor-
malized value corresponding to the impedance of the
reference coil is generated, which is both drive voltage
and temperature compensated.

The advantage of a ratio-metric measurement is the
elimination of supply voltage and temperature drift from
the impedance measurement. Any change in the AC
drive current, derived from the supply voltage, will
affect the voltage on both coils equally. In the same
way, any physical changes due to thermal expansion in
the coils will affect the voltage. The result is that both
effects cancel out in the division of one value, by the
other.

To measure the two values, three ADC conversions
must take place. The first measures the pulsed DC volt-
age across both coils. The second measures the
pulsed DC voltage across the sensor coil (or reference
coil in an analog multiplexer topology). And, the
optional third measurement is the virtual ground
reference of the detector.

Using these three values, the impedances of both the
reference and the sensor coils, can be calculated. The
sensor value is then divided by the reference value to
produce the normalized ratio-metric impedance value
for the sensor. Typically, the sensor coil value is found
by subtracting the reference coil reading from the read-
ing for both coils. The ground reference reading is then
subtracted from the reference coil to remove the DC
offset due to the virtual ground of the detector.

Determining a touch is accomplished by comparing the
resulting normalized impedance value with an average
value for the sensor. If the new value is lower, by a
preprogrammed threshold, then the button is consid-
ered pressed, if not, it is released. See Figure 2 for a
flowchart of the sensor measurement and decoding
buttons.

Note: Microchip inductive mTouch™ sensing
solution is proprietary technology. It is
available to customers free-of-charge
under a license agreement permitting use
and implementation of the technology on
any PIC® microcontroller or dsPIC® digital
signal controller.

Author: Keith Curtis
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01241A-page 1

AN1241

FIGURE 2: FLOWCHART FOR

INDUCTIVE TOUCH
CONTROLLING PULSED DC DRIVER
The frequency source, used to create the AC source for
the driver, can be generated by a Capture/Compare/
PWM (CCP) peripheral in its PWM mode, or by the
CLKOUT function of the PIC microcontroller. This drive
must be as high in frequency as possible, and have a
50% duty cycle. Given a 4 MHz oscillator clock, that
means a 1 MHz clock source is possible if the CCP
peripheral, in PWM mode, is used to generate the drive
(due to the resolution of the PR2 register when it is
used to set the period of the CCP PWM). Other clock
sources can also be used in place of the PWM output,
provided they have the ability to start and stop the clock
under software control. For this application note, it will
be assumed that the clock source is the CCP in PWM
mode.

To turn on the driver, assuming a 1 MHz output and a
4 MHz oscillator, all that is needed is to change the
duty cycle of the PWM, from 0% to 50%. This is
accomplished by setting the PWM LSb (DC1B<0>, bit
4) in the CCP1CON register. To turn off the Pulsed DC
Driver, simply clear the LSbs in the CCP1CON
register.

SELECTING THE SENSOR OR
REFERENCE INPUTS
The routing of the sensor and reference input voltages
to the detector are handled by a Single Pole, Double
Throw (SPDT) multiplexer at the input of the detector
circuit. Selecting between the inputs is just a matter of
setting or clearing the appropriate GPIO tied to the
select line of the multiplexer.

Select
Reference

Input

Get ADC

Select
Sensor
Input

Get ADC

Calculate
Normalized

Value

Get ADC

 Turn off Driver

Value <
Threshold

Average
New Value

Pressed
Logic

Turn on Driver

Yes

Button
No

Note: Before performing the actual ADC conver-
sion, it is necessary for the output of the
detector to stabilize. For this reason, a
delay should be inserted between any
changes to the configuration of the detec-
tor (driver on/off, or sensor/reference input
select changes) and the conversion of the
detectors output by the ADC. Equations
for determining the appropriate delay are
given in AN1237, “Inductive Touch Hard-
ware Design”, which covers the hardware
design of the inductive touch interface.
DS01241A-page 2 © 2008 Microchip Technology Inc.

AN1241
GET ADC
The function that reads the ADC actually performs four
ADC conversions. The results are added together and
divided by 2. The result is an 11-bit number, using a
10-bit ADC.

The increase in resolution is due to random noise at the
ADC input. If the conversion voltage is exactly centered
on an ADC value, then the 4 values will average out to
the ADC value multiplied by two. However, if the con-
version voltage is centered between the ADC value,
then the 4 conversion values will average out to a value
half way between the two values, hence the 11th bit of
the conversion. While two values would be sufficient
most of the time, four values help to insure a more
accurate conversion.

NORMALIZING THE IMPEDANCE
MEASUREMENT VALUE
Once the ADC has converted the three values, they
can be converted into a single normalized value. How-
ever, the exact form of the equation will depend upon
the switching topology of the sensor and the reference
coils. (see AN1237).

If the system uses a GPIO selection system, the ADC
will return values BothCoils_val for the reference
coil plus the sensor coil, Sensor_val just for the
sensor coil, and a Vref_val for the detector circuit’s
virtual ground. The values BothCoils_val and
Sensor_val incorporate an additional offset,
Offset_val.This offset is estimated for each key at
power-up, based on the assumption that all keys are
initial un-pressed and the values for reference coil and
sensor coils are the same. Under these conditions, the
following equations are used to describe a GPIO
selection system:

EQUATION 1: GPIO SELECTION SYSTEM
EQUATIONS

If the system uses an analog multiplexer-based
system, then the ADC will return a BothCoils_val
value, a Ref_val value, and a Vref_val for the
detector circuit’s virtual ground. The equations for
calculating a normalized value for this system are
shown below:

EQUATION 2: ANALOG MULTIPLEXER
SYSTEM EQUATIONS

Once a normalized impedance value is obtained, it is
compared against a coil average value, offset by a pre-
programmed threshold. The threshold offset prevents
low-level noise from triggering the sensor incorrectly,
so the value of the threshold should be chosen such
that a reasonable user press will trigger a press condi-
tion, but the worst-case noise in the normalized value
will not cause a trigger.

Typically, the individual threshold for each button is
calculated as a percentage of the current sensor
average. This keeps the overall sensitivity of the
various sensors equal.

The difference between the normalized impedance
value and the coil average value is also a measure of
the force exerted by the user on the sensor. By moni-
toring this value, the application software can modify
the rate of change generated by the user’s press, or
even change the function of the button based on the
force of the press. The result is a more intuitive feel for
the user. For example, the system can increment a
parameter faster in response to a hard press, or even
change the function from a momentary button, into a
latched function in response to the strong press. All that
is required in the software is a variable to hold the peak
difference during the last press, and logic to determine
the appropriate response.

SYSTEM POWER-UP ROUTINES
In order to avoid false key-pressed events and fast
system response, the software module will initialize the
average and offset value with the value resulted from
the first key scan:

EXAMPLE 1: SYSTEM INIT() ROUTINE

BothCoil_val = Sensor_Coil+Ref_coil + Offset_val+Vref_val

Ref_coil = Sensor_coil

Ref_coil = BothCoil_val – Sensor_val

Offset_val = 2*Sensor_val – BothCoil_val – Vref_val

Sensor_coil = Sensor_val – Offset_val – Vref_val

Normal_coil = (Sensor_coil * 1024)/Ref_coil

Note: At power-up, all keys should be un-
pressed. If a key is pressed, additional
detection logic will be required in software.

Ref_coil Ref_val= Vref_val–

Normal_coil Sensor_coil * 1024()
Ref_coil

---=

Sensor_coil BothCoil_val Ref_val–=

for index=0;index NUM_BTTNS;index++<()
{

measure_pad index();
AVERAGE index[] presspercent;=

AVERAGE index[] 4;=«

TRIP index[] AVERAGE index[]*SENSITIVITY;=

OFFSET index[] 2*sensor_coil both_coil– Vref;–=

}

© 2008 Microchip Technology Inc. DS01241A-page 3

AN1241
SYSTEM AVERAGING ROUTINES
The final segment of the conversion software is the
sensor average for each input. This routine adds a
small portion of each new value to an ongoing average,
retained for each button. This average tracks the minor
changes in the systems un-pressed button values for
each sensor. An example code snippet is shown below:

EXAMPLE 2: SENSOR AVERAGING
ROUTINE

For a GPIO selection system, the calculated offset
should also track the minor system changes, as shown
in Example 3:

EXAMPLE 3: SENSOR OFFSET ROUTINE

The final function to perform at the end of a sensor
conversion is to reconfigure the system for the next
sensor to be scanned. This will leave the peripherals
ready for the next conversion.

Appendix A contains a complete inductive touch code
listing for a multiplexer-based system of 4 buttons, and
a GPIO-based system. Other configurations can be
found on Microchip’s web page, attached to the induc-
tive touch developer’s page.

CONCLUSION
The software required to implement an inductive touch
solution is relatively simple, when compared to the
complexity of a typical capacitive touch solution. This
simplicity is due to the ratio-metric measurement
system employed by the inductive touch system.
Because the reference coil provides a stable reference,
against which the buttons sensors can be measured,
there is no need to compensate for variations in either
the temperature of the system, or the drive voltage.

MEMORY USAGE
A typical implementation will require approximately 2K
words of program memory, and between 120 and 150
bytes of data.

Note: The average routine should only be called
if the button is not currently being pressed.
Averaging in a pressed value would result
in the depression of the average and,
ultimately, in the loss of the press condi-
tion even though the user was still holding
down the Target.

Note: Other forms of averaging routines are
discussed in the capacitive mTouch™
Software Developer’s Kit, available on
Microchip’s web site at:
 www.microchip.com/mtouch

small_avg AVERAGE channel[] 4;»=

AVERAGE channel[]- small_avg;=

AVERAGE channel[]+=presspercent;

(2*Sensor_val–BothCoil_val-Vref-val)>> 4

Offset_val[channel]- = small_Offset_val

small_Offset_val = Offset_val[channel] >> 4

Offset_val[channel]+ =
DS01241A-page 4 © 2008 Microchip Technology Inc.

http://www.Microchip.com/mTouch
http://www.Microchip.com/mTouch
http://www.Microchip.com/mTouch

AN1241
APPENDIX A: SOFTWARE EXAMPLE FOR ANALOG MULTIPLEXER SYSTEM

void main(void)

{

OSCCON = 0x71; // Internal oscillator 8mhz

OSCTUNE= 0;

while (HTS == 0); // wait for clock to stabilise

InitPORT();

InitPeripheral();

keypressed = 0; // Initialise a few variables

padcount = 0;

general_delay(WAIT_100ms); // Settle down delay
for (index = 0; index < NUM_BTTNS; index++)

{

measure_pad(index); // get a value for the button

AVERAGE[index] = presspercent; // load into array

AVERAGE[index] <<= 4; // multiply by 16

TRIP[index] = AVERAGE[index] * SENSITIVITY; // calculate a trip point

}

// Main program loop

while (1) /* INFINITE LOOP */

{

measure_pad(padcount); // Do actual pad read

if (padcount == 0)

{

anykeypressed = 0; // reset flag at the start of cycle

}

if (padpressed == 1)

{

if (((keypressed >> padcount)& 0x01) == 0)

{

Beep(padcount);

}

keypressed |= (1<<padcount);

}

else keypressed &= (1<<padcount)^0xFFFF;

padcount++;

if (padcount >= NUM_BTTNS) padcount = 0;

}

}

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
© 2008 Microchip Technology Inc. DS01241A-page 5

AN1241
// *********************** Subroutines ******************************

void measure_pad(unsigned char channel) // Performs actual read of key

{

signed int threshold; // value for calculated threshold

unsigned int small_avg; // current button value

select_keypad(channel); // first select the required keypad

CCP1CON = 0b00101100; // Turn on pulse DC driver
T2CON = 0b00000100;
SelectRef = Button; // select button + reference coils

general_delay(RX_DELAY);// stability

general_delay (RX_DELAY); // stability

both_coils = adc(); // Read ADC

SelectRef = Reference; // select reference coil only

general_delay(REF_DELAY); // stability delay

ref_coil = adc(); // Read ADC RS232 third field

select_keypad(NUM_BTTNS); // turn off buttons

CCP1CON = 0b00001100; // turn off Pulsed DC driver

T2CON = 0b00000000;

general_delay(REF_DELAY); // stability delay

Vref = adc(); // Read ADC - virtual ground reference

presspercent = (ref_coil - both_coils);// Subtract reading from background
presspercent = presspercent << 10; // Multiply to get sensible scale

presspercent = presspercent / (Vref - ref_coil); // Divide by (reference - Vref)

small_avg = AVERAGE[channel]>>4;

threshold = small_avg - (TRIP[channel]>>4);// effective threshold number

if (presspercent < threshold) // Compare reading to threshold

{

anykeypressed = 1; // set flags if key pressed

padpressed = 1;

}

else

{

padpressed = 0;

if ((presspercent >= 400) & (presspercent <2000)) // remove bad values

{

AVERAGE[channel] -= small_avg;

AVERAGE[channel] += presspercent; // Averaging

}

}

if (presspercent > small_avg) AVERAGE[channel] = (presspercent << 4);

// slow press bleeds average, this is quick avg reset

RAW[channel] = presspercent<<4; // save raw value

}

unsigned int adc(void) // Get ADC reading
DS01241A-page 6 © 2008 Microchip Technology Inc.

AN1241

{

unsigned int adc_avg = 0;

unsigned char cntr;

for (cntr = 0; cntr < 4; cntr++)

{ // average 4 values

GODONE = SET; // start conversion

while (GODONE == SET); // wait while busy

adc_avg += (ADRESH<<8) | ADRESL; // add value to average

}

adc_avg >>=1; // multiply total average by 2 (shift by 1)

return (adc_avg);

}

void general_delay(int delay) {

while(--delay!=0);

return;

}

© 2008 Microchip Technology Inc. DS01241A-page 7

AN1241

APPENDIX B: SOFTWARE EXAMPLE FOR GPIO SELECTION SYSTEM

void main(void)

{

OSCCON = 0x71; // Internal oscillator 8mhz

OSCTUNE= 0;

while ((OSCCON & 0x04) == 0); // wait for clock to stabilise

InitPORT();

InitPeripheral();

keypressed = 0; // Initialise a few variables

padcount = 0;

general_delay(WAIT_100ms); // Settle down delay

for (index = 0; index < NUM_BTTNS; index++)

{

measure_pad(index); // get a value for the button

AVERAGE[index] = presspercent; // load into array

AVERAGE[index] <<= 4; // multiply by 16

TRIP[index] = AVERAGE[index] * SENSITIVITY; // calculate a trip point

OFFSET[index]=2*sensor_coil-both_coil-Vref; //estimate the offset

}

// Main program loop

while (1) /* INFINITE LOOP */

{

measure_pad(padcount); // Do actual pad read

if (padcount == 0)

{

anykeypressed = 0; // reset flag at the start of cycle

}

if (padpressed == 1)

{

if (((keypressed >> padcount)& 0x01) == 0)

{

Beep(padcount);

}

keypressed |= (1<<padcount);

}

else keypressed &= (1<<padcount)^0xFFFF;

padcount++;

if (padcount >= NUM_BTTNS) padcount = 0;

}

}

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS01241A-page 8 © 2008 Microchip Technology Inc.

AN1241

// *********************** Subroutines ******************************

void measure_pad(unsigned char channel) // Performs actual read of key

{

signed int threshold; // value for calculated threshold

unsigned int small_avg; // current button value

select_keypad(channel); // first select the required keypad

CCP1CON = 0b00101100; // Turn on oscillator
T2CON = 0b00000100;

SelectRef = Button; // select button + reference coils

general_delay(RX_DELAY); // stability delay

both_coils = adc(); // Read ADC

SelectRef = Reference; // select reference coil only

general_delay(REF_DELAY); // stability delay

sensor_coil = adc(); // Read ADC RS232 third field

select_keypad(NUM_BTTNS); // turn off buttons

CCP1CON = 0b00001100; // turn off the drive
T2CON = 0b00000000;

general_delay(REF_DELAY); // stability delay

Vref = adc(); // Read ADC - virtual ground reference

presspercent = (sensor_coil - Vref-offset[channel]);// Subtract reading from
background

presspercent = presspercent << 11; // Multiply to get sensible scale

presspercent = presspercent / (both_coils-sensor_coil);// Divide by (reference
- Vref)

small_avg = AVERAGE[channel]>>4;

threshold = small_avg - (TRIP[channel]>>4);// effective threshold number

if (presspercent < threshold) // Compare reading to threshold

{

anykeypressed = 1; // set flags if key pressed

padpressed = 1;

}

else

{

padpressed = 0;

if ((presspercent >= 1500) & (presspercent <2500)) // kill bad values

{

AVERAGE[channel] -= small_avg;

AVERAGE[channel] += presspercent; // Averaging

small_offset=OFFSET[CHANNEL]>>4;

OFFSET[channel]-=small_offset;

OFFSET[channel]+=2*sensor_coil-both_coil-Vref;

}

}

if (presspercent > small_avg) AVERAGE[channel] = (presspercent << 4);

// slow press bleeds average, this is quick avg reset

RAW[channel] = presspercent<<4; // save raw value

}

© 2008 Microchip Technology Inc. DS01241A-page 9

AN1241

unsigned int adc(void) // Get ADC reading

{

unsigned int adc_avg = 0;

unsigned char cntr;

for (cntr = 0; cntr < 4; cntr++)

{ // average 4 values

GODONE = SET; // start conversion

while (GODONE == SET); // wait while busy

adc_avg += (ADRESH<<8) | ADRESL; // add value to average

}

adc_avg >>=1; // multiply total average by 2 (divide by 1)

return (adc_avg);

}

void general_delay(int delay) {

while(--delay!=0);

return;

}

DS01241A-page 10 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01241A-page 11

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01241A-page 12 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820\

WORLDWIDE SALES AND SERVICE

01/02/08

	INTRODUCTION
	THEORY OF OPERATION
	FIGURE 1: Inductive Touch Block Diagram
	FIGURE 2: FlowChart for Inductive Touch

	Controlling Pulsed DC DRIVER
	SELECTING THE SENSOR OR REFERENCE INPUTS
	GET ADC
	NORMALIZING THE IMPEDANCE MEASUREMENT VALUE
	EQUATION 1: GPIO Selection System Equations
	EQUATION 2: Analog Multiplexer System Equations

	System Power-Up Routines
	EXAMPLE 1: System Init() Routine

	SYSTEM AVERAGING ROUTINES
	EXAMPLE 2: Sensor Averaging Routine
	EXAMPLE 3: Sensor Offset Routine

	Conclusion
	MEMORY USAGE
	Appendix A: Software Example for Analog Multiplexer System
	Appendix B: Software Example for GPIO Selection System
	Inductive Touch Software Design
	Worldwide Sales and Service

